ORGANOTTTANIUM CHEMISTRY

V *. ELECTRON IMPACT AND NEGATIVE ION CHEMICAL IONIZATION MASS SPECTRA OF DERIVATIVES OF DICYCLOPENTADIENYLTTTTANIUM(IV) DICHLORIDE AND ALLYLDICYCLOPENTADIENYLTITANIUM(III)

GUIXIANG FU, YANLONG QIAN, YONGZHEN XU,
Shanghai Institute of Organic Chemistry, Academia Sinica, Shanghai (China)
and SHOUSHAN CHEN
The Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin (China)

(Received February 24th, 1986; in revised form April 28th, 1986)

Summary

Electron impact (EI) and negative ion chemical ionization (NCI) mass spectra of twenty-four derivatives of dicyclopentadienyltitanium(IV) dichloride and eleven derivatives of allyldicyclopentadienyltitanium(III) were investigated. For El spectra of these 24 compounds most of the molecular ion peaks were not discernible. The characteristic fragment ions $(M-C l)^{+},(M-2 C l){ }^{+},(M-2 H C l){ }^{+},\left(M-\mathrm{RC}_{5} \mathrm{H}_{4}\right)^{+}$ and $\left(\mathrm{RC}_{5} \mathrm{H}_{4}\right)^{+}$were observed. The NCI mass spectra of these 24 compounds exhibited strong molecular ion peaks and a series of ions giving structural information.

The EI mass spectra of η^{3}-allyldi- η^{5}-cyclopentadienyl-titanium(III) compounds showed molecular ion peaks with low intensity and a series of cyclopentadienyltitanium ions and ions characteristic of allyl groups.

Introduction

The mass spectra of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MX}_{2}$ (where $\mathrm{M}=\mathrm{Ti}, \mathrm{Zr}, \mathrm{Hf} ; \mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) [1-4] have been reported. The spectra are relatively simple and show competitive loss of the halide and $\mathrm{C}_{5} \mathrm{H}_{5}$ after ionization. In all cases, the highest m / z ion is the monomeric parent molecular ion. In this paper, an extensive study has been made of twenty-four derivatives of dicyclopentadienyltitanium(IV) dichloride and eleven

[^0]derivatives of allyldicyclopentadienyltitanium(III). The fragmentation pathways are discussed.

Results and discussion

The electron impact (EI) mass spectra of compounds $\left(\eta^{5}-\mathrm{RC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{TiCl}_{2}, \mathbf{1} \mathbf{- 2 4}$, are

$$
\left(\mathrm{RC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{TiCl}_{2}
$$

1. $\mathrm{R}=\mathrm{CH}_{3}$
2. $R=\mathrm{C}_{2} \mathrm{H}_{5}$
3. $\mathrm{R}=\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$
4. $R=n-C_{4} H_{9}$
5. $R=n-\mathrm{C}_{5} \mathrm{H}_{11}$
6. $R=\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}_{\mathrm{CH}_{3}}^{\mathrm{CH}}$
7. $\mathrm{R}=$ cyclo $-\mathrm{C}_{5} \mathrm{H}_{9}$
B. $\mathrm{R}=$ cyclo $-\mathrm{C}_{6} \mathrm{H}_{11}$
8. $\mathrm{R}=\mathrm{CH}_{2}=\mathrm{CHCH}_{2}$
9. $\mathrm{R}=\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2}$
10. $\mathrm{R}=\mathrm{CH}_{2}=\mathrm{CCH}_{2}$

11. $\mathrm{R}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2}$
12. $\mathrm{R}=\mathrm{CH}_{2}=\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2}$

13. $\mathrm{R}=\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}$
14. $\mathrm{R}=\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2}$
15. $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}_{2} \mathrm{CH}_{2}$
16. $R=$

17. $R=$

18. $R=$

19. $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$
20. $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)$
21. $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$
22. $R=p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$
listed in Table 1 (only ions of importance are listed). In most of these spectra, molecular ion peaks were not discernible; only for compounds with an alkyl substituent were molecular ion peaks of low intensity observed. The major degradation pathway of the molecular ions formed from the complexes involved the successive elimination of chlorine to form intense peaks corresponding to ($M-\mathrm{Cl})^{+}$ and $(M-2 C l)^{+}$, respectively. In addition to the elimination of two chlorines; elimination of 2 HCl also occurred competitively. Another degradation pathway consisted of elimination of the substituted cyclopentadienyl ligand giving intense peaks corresponding to the $\left(M-\mathrm{RC}_{5} \mathrm{H}_{4}\right)^{+}$ion. Elimination of $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{6}$ and 2 H from $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C}_{5} \mathrm{H}_{4}$ produced intense peaks at $m / z 91,79$ and 77 , respectively (Scheme 1).

Unlike the spectra of derivatives of unsubstituted cyclopentadienyl, the spectra of compounds $1-8$ contain a very intense peak corresponding to $(M-2 H C l)+$, which has a greater intensity than that of $(M-2 \mathrm{Cl})^{+}$. Introduction of an alkenyl group or another complex substituent into the cyclopentadienyl ring ($9-24$) causes an increase in the intensity of the $(M-2 \mathrm{Cl})$ peak which is greater that of the $(M-2 \mathrm{HCl})$ peak (excepting compound 15) (see Table 1). Of special interest is the occurrence of a prominent adduct ion $\left(M-\mathrm{Cl}+\mathrm{C}_{n} \mathrm{H}_{2 n-2}\right)(n=3-4)$ in the spectra of compounds 9-11. The product was postulated to have arisen from the reaction of the initial $(M-C l)+$ product with a neutral molecule $\mathrm{C}_{n} \mathrm{H}_{2 n-2}(n=3-4)$.
(Continued on p. 120)

SCHEME 1

SCHEME 2. Possible fragmentation pathways for compounds 25-35.
TABLE 1
EI MASS SPECTRAL DATA OF COMPOUNDS 1-24 (relative intensities in parentheses)

Compound	M^{+}	$(\mathrm{M}-\mathrm{Cl})^{+}$	$(M-2 C 1)+$	$(\mathrm{M}-2 \mathrm{HCl})^{+}$	$\left(M-\mathrm{RC}_{5} \mathrm{H}_{4}\right)^{+}$	$\begin{gathered} M_{-}^{-\mathrm{RC}_{5} \mathrm{H}_{4}} \\ \hline \end{gathered}$	$\begin{gathered} -\mathrm{Cl} \\ M-\mathrm{R} \\ +\mathrm{H} \end{gathered}$	$\mathrm{RC}_{5} \mathrm{H}_{4}{ }^{+}$	$\mathrm{C}_{7} \mathrm{H}_{9}{ }^{+}$	$\mathrm{C}_{6} \mathrm{H}_{7}{ }^{+}$	$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}$	Other io	
1	276	241	206	204	197	161	227	79	91	79	77		
	(16.2)	(100)	(21.4)	(35.2)	(46.2)	(34.7)	(3.6)	(20.4)	(-)	(20.4)	(44.1)		
2	304	269	234	232	211	175	241	93	91	79	77	204	$\left(M^{-2 \mathrm{HCl}}\right)$
	(3.9)	(23.8)	(10.5)	(84.0)	(62.3)	(40.0)	(18.9)	(59.7)	(99.5)	(7.2)	(100)	(49.1)	$\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4}\right)$
3	332	297	262	260	225	189	255	107	91	79	77	218	$\left(M^{-2 \mathrm{HCl}}\right)$
	(2.9)	(100)	(13.5)	(44.5)	(32.7)	(13.1)	(74.3)	(24.9)	(27.0)	(48.3)	(19.2)	(34.3)	$\left(M-\mathrm{C}_{3} \mathrm{H}_{6}\right)$
4	360	325	290	288	239	203	269	121	91	79	77	232	$\left(M^{-2 \mathrm{HCl}}\right)$
	(2.8)	(46.1)	(16.3)	(100)	(43.1)	(18.7)	(13.9)	(8.5)	(16.3)	(57.4)	(29.7)	(22.7)	$\left({ }^{-} \mathrm{C}_{4} \mathrm{H}_{8}\right)$
5	388	353	318	316	253	217	283	135	91	79	77	246	$\left(M^{-2 \mathrm{HCl}}\right.$
	(2.1)	(94.0)	(21.0)	(100)	(41.5)	(7.4)	(12.4)	(8.4)	(13.4)	(37.7)	(22.4)	(9.9)	$\left(M_{-\mathrm{C}_{5} \mathrm{H}_{10}}\right)$
6	388	353	318	316	253	217		135	91	79	77		
	(0.3)	(100)	(24.8)	(70.7)	(19.5)	(3.3)		(15.7)	(25.9)	(12.1)	(10.8)		
7	384	349	314	312	251	215	281	133	91	79	77		
	(-)	(100)	(22.8)	(94.1)	(15.0)	(8.9)	(10.2)	(32.1)	(83.7)	(17.7)	(14.1)		
8	412	377	342	340	265	229		147	91	79	77		
	(-)	(100)	(21.8)	(86.7)	(12.8)	(6.8)		(19.8)	(24.1)	(26.7)	9.5		
9	328	293	258	256	223	187		105					
	$(-)$	(100)	(10.4)	(5.0)	(21.0)	(17.7)		(29.9)	(5.4)	(52.5)	(61.6)	(26.0)	$\left(M+\mathrm{C}_{3} \mathrm{H}_{4}\right)$
10	356	321	286	284	237	201		119	91			375	$\mathrm{M}^{-\mathrm{Cl}}$
	$(-)$	(100)	(27.8)	(6.5)	(22.5)	(20.0)		(16)	(7.6)	(13.1)	(29.0)	(2.6)	$\left(\begin{array}{c}M \\ \left.+\mathrm{C}_{4} \mathrm{H}_{6}\right)\end{array}\right.$
11	356	321	286	284	237	201		119	91	79	77	375	$\left(\mathrm{M}^{-\mathrm{Cl}}\right.$)
	(-)	(50.1)	(10.6)	(5.1)	(100)	(44.3)		(12.4)	(38.3)	(10.5)	(23.8)	(23.7)	$+\mathrm{C}_{4} \mathrm{H}_{6}{ }^{\text {a }}$

F

品贰

 \therefore 응

$$
\begin{aligned}
& \text { N}
\end{aligned}
$$

TABLE 2
NCI MASS SPECTRAL DATA OF COMPOUNDS 1-24 (relative intensities in parentheses)

Compound	M^{\top}	$(M+\mathrm{Cl})^{-}$	$(\mathrm{M}-\mathrm{Cl})^{-}$	$\left(\mathrm{M}+\mathrm{Cl}-\mathrm{RC}_{5} \mathrm{H}_{4}\right)^{-}$	$(\mathrm{M}+\mathrm{Cl}-\mathrm{R}+\mathrm{H})^{-}$	$(\mathrm{M}-\mathrm{R}+\mathrm{H})^{-}$	$(\mathrm{M}+\mathrm{Cl}-2 \mathrm{R}+2 \mathrm{H})^{-}$	$(M-2 \mathrm{R}+2 \mathrm{H})^{-}$	Other ions
1	276	311	241	232	297	262			
	(100)	(39.5)	(0.6)	(4.6)	(2.2)	(5.5)			
2	304	339	269	246	311	276	283	248	
	(100)	(40.4)	(0.6)	(7.4)	(38.6)	(84.0)	(10.0)	(7.5)	
3	332	367	297	260	325	290	283	248	
	(90.2)	(23.0)	(0.5)	(3.3)	(27.2)	(100)	(11.6)	(35.9)	
4	360	395		274	339	304	283	248	
	(100)	(26.8)		(2.3)	(20.6)	(97.1)	(4.6)	(20.6)	
5	388	423	353	288	353	318	283		
	(100)	(1.8)	(10.5)	(0.4)	(10.5)	(9.8)	(1.6)		
6	388	423	353	288					
	(100)	(2.3)	(17.0)	(0.6)					
7	384	419	349	286	351	316	283	248	
	(100)	(12.1)	(8.1)	(2.1)	(13.7)	(67.0)	(1.9)	(0.5)	
8	412	447	377	300					
	(100)	(4.2)	(10.4)	(0.6)					
9	328	363	293	258					368 ($M+\mathrm{R}-\mathrm{H})$
	(100)	(5.9)	(1.3)	(1.1)					$(17.9)(M+\mathrm{R}-\mathrm{H})$
10	356	391	321 (4.5)	272					$410 \quad(M+\mathrm{R}-\mathrm{H})$
			(4.5)	${ }^{(0.8)}$					(2.9) $(M+\mathrm{R}-\mathrm{H})$
11	$\begin{aligned} & 356 \\ & (100) \end{aligned}$	$\begin{aligned} & 391 \\ & (20.1) \end{aligned}$	$\begin{aligned} & 321 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 272 \\ & (2.7) \end{aligned}$					$410 \quad(M+\mathrm{R}-\mathrm{H})$

12	384	419	349	286				
	(100)	(8.8)	(1.6)	(4.3)				
13	384	419	349	286		316		
	(100)	(4.8)	(2.0)	(0.6)		(3.4)		
14	412	447	377	300				
	(100)	(1.0)	(18.9)	(36.9)				
15	408	443	373	298				
	(100)	(1.5)	(69.0)	(16.2)				
16	364	399	329					
	(100)	(3.3)	(6.0)					
17	392	427	357		355	320		
	(100)	(5.3)	(7.8)		(4.2)	(60.6)		
18	564	599	529	376				
	(85.9)	(5.2)	(100)	(29.2)				
19	592	627	557	390			500	-
	(29.6)	(2.8)	(58.3)	(100)			(95)	
20	592	627	557	390				
	(30.1)	(0.1)	(96.5)	(100)			(20.9))
21	484	519	449	336			406	
	(49.9)	(-)	(100)	(1.2)			(48.2)	
22	512	547	477	350			434	M
	(26.0)	(-)	(100)	(-)			(1.1)	
23	540	575	505	364				
	(84.4)	(-)	(100)	(13.8)				
24	544	579	509	366		395		CH, $\mathrm{OC}_{6} \mathrm{H}_{5}$)
	(62.3)	(1.0)	(100)	(13.1)		(7.4)	(12.4)	${ }_{3}$

In an attempt to obtain a greater abundance of ions characteristic of the molecular weight, we determined the NCI mass spectra of compounds $\mathbf{1 - 2 4}$ using CH_{4} as the reagent gas. A selection of our results is presented in Table 2. The major ions observed in all spectra are molecular ions, occurring mostly as base peaks. Thus, the CH_{4} negative ion chemical ionization (NCI) mass spectra are preferred for providing molecular weight information. In addition to forming molecular ions, the NCI mass spectra of compounds $1-24$ exhibited a series of ions giving structural information: $(M+\mathrm{Cl})^{-},(M-\mathrm{Cl})^{-}$and $\left(M+\mathrm{Cl}-\mathrm{RC}_{5} \mathrm{H}_{4}\right)^{-}$(except 16, 17). For compounds 1-5, 7 and 17, the ions $(M+\mathrm{H}-\mathrm{R})^{-},(M+2 \mathrm{H}-\mathrm{R})^{-},(M+\mathrm{Cl}-$ $\mathrm{R}+\mathrm{H})^{-}$and $(M+\mathrm{Cl}-2 \mathrm{R}+2 \mathrm{H})^{-}$were observed. The adduct ion $(M+\mathrm{Cl})^{-}$was formed by an ion-molecule reaction, because the chloride ion may have acted as a nucleophile in the gas phase. The adduct ion $\left(M+C_{n} \mathrm{H}_{2 n-2}\right)^{-}(n=3-4)$ were observed in the NCI mass spectra of compounds 9-11. Similar adduct ions $\left(M-\mathrm{Cl}+\mathrm{C}_{n} \mathrm{H}_{2 n-2}\right)^{+}$were seen in the EI mass spectra. The other ions ($M-$ $\left.\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}\right)^{-},\left(M-\mathrm{C}_{6} \mathrm{H}_{5}\right)^{-},\left(M-\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-}$and $\left(M-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}\right)$ were also observed for compounds 19-24, respectively.

The NCI technique is a successful and simple method for determining the molecular weight and for obtaining valuable structural information of organometallic compounds.

At present little is known about allyl complexes of titanium(III) or of the other oxidation states of titanium. The compounds $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiR}(\mathrm{R}=$ allyl, 1-methylallyl, 2-methylallyl, 1,3-dimethylallyl and 1,1-dimethylallyl), are extremely air-sensitive complexes [5]. The infrared spectra indicate [5] that the allyl ligands are π-bonded

TABLE 3
EI MASS SPECTRAL DATA OF COMPOUNDS 25-35 (relative intensities in parentheses)

Compound	M^{+}	$\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}^{+}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Ti}^{+}$	Other ions
25	261	178	113	$152,87,73,48$
	(21.0)	(100)	(53.8)	
26	275	178	113	$96,81,67,55,41$
	(7.0)	(100)	(33.0)	
27	289	178	113	$152,87,81,55,41$
	(9.0)	(100)	(13.0)	
28	317	178	113	$140,95,81,69,55,41$
	(7.0)	(100)	(17.0)	
29	331	178	113	$152,81,67,41$
	(4.0)	(100)	(28.0)	
30	345	178	113	$166,111,97,83,69,55,41$
	(31)	(89)	$(-)$	
31	373	178	113	$194,95,81,67,55,41$
	(4.0)	(100)	(19.0)	
32	233	178	113	$87,73,55,41$
	(9.5)	(100)	(21.6)	
33	261	178	113	$152,87,71,57,41$
	(6.4)	(100)	(20.0)	
34	261	178	113	$87,67,55,41$
	(7.7)	(100)	(31.0)	
35	287	178	113	$108,93,77,53,41$
	(7.1)	(100)	(12.9)	

to the metal, as are the cyclopentadienyl ligands. The mass spectra of allyl complexes of Ti, Nb and Ta together with the methylallyl complexes of Ta were reported in 1974 [6]. The fragmentation patterns of the complexes $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MR}$ ($M=\mathrm{Ti}, \mathrm{Nb}, \mathrm{Ta}$) do not depend strongly on the nature of the metal or on the position of the methyl group. In all cases fragmentation starts with elimination of the allyl group. Recently alkenyldicyclopentadienyltitanium complexes have received attention [7]. We have studied the EI mass spectra of allyldicyclopentadienyltitanium(III) for compounds $\mathbf{2 5 - 3 5}$ and in all cases the molecular ion peaks

25. $k=1$
29. $k=6$
32. $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}$

26. $k=2$
30. $k=7$
27. $k=3$
31. $k=9$
33. $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}$

28. $k=5$
34. $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}$

35. $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}$

were observed, with low intensities. The prominent ions are listed in Table 3. The fragmentation pattern of 1,3 -disubstituted allyldicyclopentadienyltitanium complexes is similar to that of the $\mathrm{Cp}_{2} \mathrm{Ti}(\pi$-allyl) complex. The mass spectra of compounds $\mathbf{2 5 - 3 5}$ show that the molecular ions decompose via two routes resulting in the elimination of R and $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}$ and the formation of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}^{+}$and R^{+}. The major metallic ions are formed by loss of $\mathrm{C}_{5} \mathrm{H}_{5}$ or $\mathrm{C}_{2} \mathrm{H}_{2}$ from $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}$, and $\left(\mathrm{TiC}_{3} \mathrm{H}_{3}\right)^{+}$was formed from $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{TiC}_{3} \mathrm{H}_{3}\right)^{+}$by elimination of $\mathrm{C}_{5} \mathrm{H}_{5}$. The R^{+}ions lose H or 2 H to give $\left(\mathrm{C}_{n} \mathrm{H}_{2 n}\right)^{+}$and $\left(\mathrm{C}_{2} \mathrm{H}_{2 n-3}\right)^{+}$.

Experimental

The mass spectra were recorded on Finnigan 4021 quadrupole mass spectrometers. Methane was used as the NCI reagent gas at a pressure of 0.3 Torr. The source
temperature was $200^{\circ} \mathrm{C}$ for NCI and $250^{\circ} \mathrm{C}$ for EI . The solid insertion probe was used at $50-250^{\circ} \mathrm{C}$. Some of the data of allyldicyclopentadienyltitanium compounds were recorded on Varian Mat 311 at the Max-Planck Institut für Kohlenforschung in West Germany.

Acknowledgement

This project is supported by the Science Fund of the Chinese Academy of Sciences.

References

1 P.M. Druce, B.M. Kingston, M.F. Lappert, T.R. Spalding and R.C. Srivastava, J. Chem. Soc. A, (1969) 2106.

2 A.N. Nesmeyanov, Yu. S. Nekrasov, V.F. Sizoi, O.V. Nogina, V.A. Dubovitsky and Ye. I. Sirotkina, J. Organomet. Chem., 61 (1973) 225.
3 J.G. Dillard, Inorg. Chem., 8 (1968) 2148.
4 Yu. A. Ol'dekon and V.A. Knizhnikov, Zh. Obshch. Khim., 52 (1982) 1571.
5 H.A. Martin and F. Jellinek, J. Organomet. Chem., 8 (1967) 115.
6 A. Van Baalen, C.J. Groenenboom and H.J. de Liefde Meijer, J. Organomet. Chem., 74 (1974) 245.
7 H. Lehmkuhl, Y.L. Tsien (Y. Qian), E. Janssen and R. Mynott, Chem. Ber., 116 (1983) 2426.
8 C. Chen, X. Zhong Y. Qian, Q. Huang, S. Chen and Y. Huaxue, Org. Chem., in press.

[^0]: * For part IV see ref. [8]

